adding fixed, working on debugging infinite loop

This commit is contained in:
herbglitch 2025-02-16 23:45:27 -07:00
parent fc5bf78919
commit 6a9f914ffb
5 changed files with 144 additions and 64 deletions

3
.gitignore vendored
View file

@ -529,3 +529,6 @@ doc/doxygen/html
.ccls .ccls
.vscode .vscode
tests/test_error_out.txt tests/test_error_out.txt
vgcore.*
callgrind.*

View file

@ -41,7 +41,7 @@ typedef void (* ARC_Hashtable_DestroyKeyValueFn)(void *key, void *value);
* @param[in] key a key at the current iteration * @param[in] key a key at the current iteration
* @param[in] value a value that matches the key at the current iteration * @param[in] value a value that matches the key at the current iteration
*/ */
typedef void (* ARC_Hashtable_IteratorFn)(void *key, void *value); typedef void (* ARC_Hashtable_IteratorFn)(void *key, void *value, uint32_t temp, uint32_t tempid);
/** /**
* @brief a resizable hashtable data type (will find next open slot before resizing) * @brief a resizable hashtable data type (will find next open slot before resizing)

View file

@ -69,8 +69,8 @@ void ARC_Lexer_Destroy(ARC_Lexer *lexer);
/** /**
* @brief adds a token rule to a lexer * @brief adds a token rule to a lexer
* *
* @param [in] lexer the lexer to add a token rule to * @param[in] lexer the lexer to add a token rule to
* @param [in] tokenRule the token rule to add * @param[in] tokenRule the token rule to add
*/ */
void ARC_Lexer_RegisterTokenRule(ARC_Lexer *lexer, ARC_LexerTokenRule tokenRule); void ARC_Lexer_RegisterTokenRule(ARC_Lexer *lexer, ARC_LexerTokenRule tokenRule);

View file

@ -13,7 +13,7 @@ struct ARC_HashtableNode {
uint32_t hashvalue; uint32_t hashvalue;
//will be set if next slot is searched for, to be used to remove elements faster //will be set if next slot is searched for, to be used to remove elements faster
uint32_t initialIndex; uint32_t nextIndex;
}; };
struct ARC_Hashtable { struct ARC_Hashtable {
@ -109,34 +109,36 @@ void ARC_HashtableNode_SetNearestNodeToArray(ARC_HashtableNode *nodes, uint32_t
//get the first possible index based on the node's hashvalue //get the first possible index based on the node's hashvalue
uint32_t index = node.hashvalue % capacity; uint32_t index = node.hashvalue % capacity;
//get the first possible node //go to last added
ARC_HashtableNode foundNode = nodes[index]; while(nodes[index].nextIndex != index){
index = nodes[index].nextIndex;
}
//init variable for found node //init variable for found node
uint32_t nextIndex = index; uint32_t nextIndex = index;
//check each available node for a free slot //check each available node for a free slot
while(foundNode.key != NULL){ while(nodes[nextIndex].key != NULL){
//up the current index by one //up the current index by one
nextIndex++; nextIndex++;
//cycle back to the first index if it is above the array's capacity //cycle back to the first index if it is above the array's capacity
if(nextIndex >= capacity){ if(nextIndex >= capacity){
index = 0; nextIndex = 0;
} }
//check if the loop has circled back to the starting index to stop checking //check if the loop has circled back to the starting index to stop checking
if(index == nextIndex){ if(index == nextIndex){
break; break;
} }
//get the next possible node
foundNode = nodes[index];
} }
//set the next index of the last added index
nodes[index].nextIndex = nextIndex;
//set the foundNode and next index //set the foundNode and next index
nodes[nextIndex] = node; nodes[nextIndex] = node;
nodes[nextIndex].initialIndex = index; nodes[nextIndex].nextIndex = nextIndex;
} }
void ARC_Hashtable_Add(ARC_Hashtable *hashtable, void *key, void *value){ void ARC_Hashtable_Add(ARC_Hashtable *hashtable, void *key, void *value){
@ -171,15 +173,18 @@ void ARC_Hashtable_Add(ARC_Hashtable *hashtable, void *key, void *value){
//resize the hashtable's array and copy the contents at the same time //resize the hashtable's array and copy the contents at the same time
hashtable->nodes = (ARC_HashtableNode *)malloc(sizeof(ARC_HashtableNode) * hashtable->currentCapacity); hashtable->nodes = (ARC_HashtableNode *)malloc(sizeof(ARC_HashtableNode) * hashtable->currentCapacity);
//set keys to null //set nodes to null
for(uint32_t index = 0; index < hashtable->currentCapacity; index++){ for(uint32_t index = 0; index < hashtable->currentCapacity; index++){
hashtable->nodes[index].key = NULL; hashtable->nodes[index] = (ARC_HashtableNode){ NULL, NULL, 0, index };
} }
//add the old nodes into the new array //add the old nodes into the new array
for(uint32_t index = 0; index < oldCapacity; index++){ for(uint32_t index = 0; index < oldCapacity; index++){
ARC_HashtableNode_SetNearestNodeToArray(hashtable->nodes, hashtable->currentCapacity, oldNodes[index]); ARC_HashtableNode_SetNearestNodeToArray(hashtable->nodes, hashtable->currentCapacity, oldNodes[index]);
} }
//free the old array
free(oldNodes);
} }
//get the hashvalue //get the hashvalue
@ -192,34 +197,35 @@ void ARC_Hashtable_Add(ARC_Hashtable *hashtable, void *key, void *value){
void ARC_Hashtable_Remove(ARC_Hashtable *hashtable, void *key){ void ARC_Hashtable_Remove(ARC_Hashtable *hashtable, void *key){
//get the index from a hashvalue //get the index from a hashvalue
uint32_t index = hashtable->hashFn(key) % hashtable->currentCapacity; uint32_t initialIndex = hashtable->hashFn(key) % hashtable->currentCapacity;
uint32_t index = initialIndex;
//get the first possible node //get the first possible node
ARC_HashtableNode node = hashtable->nodes[index]; ARC_HashtableNode node = hashtable->nodes[index];
//check each available node for a match and break if the current nodes doesn't hold anything //check each available node for a match and break if the current nodes doesn't hold anything
ARC_Bool nodeFound = ARC_False; ARC_Bool nodeFound = ARC_False;
for(uint32_t nextIndex = index; node.key != NULL;){ while(node.key != NULL){
if(hashtable->keyCompareFn(node.key, key) == ARC_True){ if(hashtable->keyCompareFn(node.key, key) == ARC_True){
index = nextIndex;
nodeFound = ARC_True; nodeFound = ARC_True;
break;
} }
//up the current index by one //up the current index by one
nextIndex++; index++;
//cycle back to the first index if it is above the array's capacity //cycle back to the first index if it is above the array's capacity
if(nextIndex >= hashtable->currentCapacity){ if(index >= hashtable->currentCapacity){
nextIndex = 0; index = 0;
} }
//check if the loop has circled back to the starting index to stop checking //check if the loop has circled back to the starting index to stop checking
if(index == nextIndex){ if(index == initialIndex){
break; break;
} }
//get the next possible node //get the next possible node
node = hashtable->nodes[nextIndex]; node = hashtable->nodes[index];
} }
//error if the node was not found //error if the node was not found
@ -234,41 +240,28 @@ void ARC_Hashtable_Remove(ARC_Hashtable *hashtable, void *key){
(*(hashtable->destroyKeyValueFn))(node.key, node.value); (*(hashtable->destroyKeyValueFn))(node.key, node.value);
} }
//set the current index to a starting index //cycle back to the first index if it is above the array's capacity
uint32_t currentIndex = index; if(index >= hashtable->currentCapacity){
index = 0;
}
//get the next possible node //while the current node needs to be moved back becuase it is offset to the initial index
node = hashtable->nodes[currentIndex]; while(hashtable->nodes[index].nextIndex != index){
//get the currently used node
//while the current node node = hashtable->nodes[index];
while(node.initialIndex == index){
//set the last index to move a offset node back to
uint32_t lastIndex = index;
//up the current index by one
currentIndex++;
//cycle back to the first index if it is above the array's capacity
if(currentIndex >= hashtable->currentCapacity){
currentIndex = 0;
}
//check if the loop has circled back to the starting index to stop checking and throw an error
if(index == currentIndex){
arc_errno = ARC_ERRNO_DATA;
ARC_DEBUG_LOG_ERROR("ARC_Hashtable_Remove(hashtable, key), removed index matched initalIndex of node, this should never happen");
return;
}
//move the current node back one //move the current node back one
hashtable->nodes[lastIndex] = hashtable->nodes[currentIndex]; hashtable->nodes[index] = hashtable->nodes[node.nextIndex];
//get the next possible node //get the next index to move back
node = hashtable->nodes[currentIndex]; index = hashtable->nodes[index].nextIndex;
//moves the next index into the next used slot
hashtable->nodes[index].nextIndex = node.nextIndex;
} }
//set the current value to an empty node //set the current value to an empty node
hashtable->nodes[currentIndex] = (ARC_HashtableNode){ NULL, NULL, 0, currentIndex }; hashtable->nodes[index] = (ARC_HashtableNode){ NULL, NULL, 0, index };
//we have removed the item so we can decrease the current size //we have removed the item so we can decrease the current size
hashtable->currentSize--; hashtable->currentSize--;
@ -290,13 +283,16 @@ void ARC_Hashtable_Remove(ARC_Hashtable *hashtable, void *key){
//set keys to null //set keys to null
for(uint32_t index = 0; index < hashtable->currentCapacity; index++){ for(uint32_t index = 0; index < hashtable->currentCapacity; index++){
hashtable->nodes[index].key = NULL; hashtable->nodes[index] = (ARC_HashtableNode){ NULL, NULL, 0, index };
} }
//add the old nodes into the new array //add the old nodes into the new array
for(uint32_t index = 0; index < oldCapacity; index++){ for(uint32_t index = 0; index < oldCapacity; index++){
ARC_HashtableNode_SetNearestNodeToArray(hashtable->nodes, hashtable->currentCapacity, oldNodes[index]); ARC_HashtableNode_SetNearestNodeToArray(hashtable->nodes, hashtable->currentCapacity, oldNodes[index]);
} }
//free the old array
free(oldNodes);
} }
void ARC_Hashtable_Clear(ARC_Hashtable *hashtable){ void ARC_Hashtable_Clear(ARC_Hashtable *hashtable){
@ -315,6 +311,13 @@ void ARC_Hashtable_Clear(ARC_Hashtable *hashtable){
} }
void *ARC_Hashtable_Get(ARC_Hashtable *hashtable, void *key){ void *ARC_Hashtable_Get(ARC_Hashtable *hashtable, void *key){
//check to make sure key is not NULL
if(key == NULL){
arc_errno = ARC_ERRNO_NULL;
ARC_DEBUG_LOG_ERROR("ARC_Hashtable_Get(hashtable, key), NULL was passed in for the key, this function cannot handle that");
return NULL;
}
//get the index from a hashvalue //get the index from a hashvalue
uint32_t index = hashtable->hashFn(key) % hashtable->currentCapacity; uint32_t index = hashtable->hashFn(key) % hashtable->currentCapacity;
@ -322,7 +325,7 @@ void *ARC_Hashtable_Get(ARC_Hashtable *hashtable, void *key){
ARC_HashtableNode node = hashtable->nodes[index]; ARC_HashtableNode node = hashtable->nodes[index];
//check each available node for a match //check each available node for a match
for(uint32_t nextIndex = index; node.key != NULL;){ for(uint32_t nextIndex = index; node.key != NULL; node = hashtable->nodes[nextIndex]){
//if the key is found, return its value //if the key is found, return its value
if(hashtable->keyCompareFn(node.key, key) == ARC_True){ if(hashtable->keyCompareFn(node.key, key) == ARC_True){
return node.value; return node.value;
@ -340,9 +343,11 @@ void *ARC_Hashtable_Get(ARC_Hashtable *hashtable, void *key){
if(index == nextIndex){ if(index == nextIndex){
break; break;
} }
}
//get the next possible node //if the key is found, return its value
node = hashtable->nodes[nextIndex]; if(node.key != NULL && hashtable->keyCompareFn(node.key, key) == ARC_True){
return node.value;
} }
//could not find node, so return NULL //could not find node, so return NULL
@ -361,6 +366,6 @@ void ARC_Hashtable_RunIteration(ARC_Hashtable *hashtable, ARC_Hashtable_Iterator
} }
//passes current iteration into the callback function //passes current iteration into the callback function
iteratorFn(node.key, node.value); iteratorFn(node.key, node.value, index, node.nextIndex);
} }
} }

View file

@ -2,20 +2,30 @@
#include "arc/std/bool.h" #include "arc/std/bool.h"
#include "arc/std/errno.h" #include "arc/std/errno.h"
#include "arc/std/hashtable.h" #include "arc/std/hashtable.h"
#include <stdio.h>
#include <stdint.h> #include <stdint.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
//TODO: add hash function for testing //TODO: add hash function for testing
void TEST_Hashtable_PrintKeyVal(void *key, void *value, uint32_t temp, uint32_t tempid){
printf("%2d) %2d: %s\t%d\n", temp, tempid, (char *) key, *(int32_t *)value);
}
void TEST_Hashtable_Print(ARC_Hashtable *hashtable){
printf("Hashtable: \n");
ARC_Hashtable_RunIteration(hashtable, TEST_Hashtable_PrintKeyVal);
printf("\n");
}
ARC_Bool TEST_Hashtable_KeyCompareDataFn(void *dataA, void *dataB){ ARC_Bool TEST_Hashtable_KeyCompareDataFn(void *dataA, void *dataB){
return (ARC_Bool)strcmp((const char *)dataA, (const char *)dataB); return (ARC_Bool)strcmp((const char *)dataA, (const char *)dataB) == 0;
} }
//TODO: more tests with destroy data fn added //TODO: more tests with destroy data fn added
void TEST_Hashtable_DestroyKeyValueFn(void *key, void *value){ void TEST_Hashtable_DestroyKeyValueFn(void *key, void *value){
free((char *)key); return;
free((int32_t *)value);
} }
ARC_TEST(Hashtable_Init){ ARC_TEST(Hashtable_Init){
@ -29,17 +39,79 @@ ARC_TEST(Hashtable_Init){
ARC_Hashtable_Destroy(hashtable); ARC_Hashtable_Destroy(hashtable);
} }
ARC_TEST(Hashtable_Add){ ARC_TEST(Hashtable_Add_Get_Remove){
ARC_Hashtable *hashtable; ARC_Hashtable *hashtable;
ARC_Hashtable_KeyCompareFn keyCompareFn = TEST_Hashtable_KeyCompareDataFn; ARC_Hashtable_KeyCompareFn keyCompareFn = TEST_Hashtable_KeyCompareDataFn;
ARC_Hashtable_DestroyKeyValueFn destroyKeyValueFn = TEST_Hashtable_DestroyKeyValueFn; ARC_Hashtable_DestroyKeyValueFn destroyKeyValueFn = TEST_Hashtable_DestroyKeyValueFn;
ARC_Hashtable_Create(&hashtable, NULL, &keyCompareFn, &destroyKeyValueFn); ARC_Hashtable_Create(&hashtable, NULL, &keyCompareFn, &destroyKeyValueFn);
char *key0 = (char *)"tests"; char *key0 = (char *)"key0";
int32_t val0 = 2; char *key1 = (char *)"key1";
ARC_Hashtable_Add(hashtable, &key0, &val0); char *key2 = (char *)"key2";
char *key3 = (char *)"key3";
char *key4 = (char *)"key4";
char *key5 = (char *)"key5";
char *key6 = (char *)"key6";
char *key7 = (char *)"key7";
char *key8 = (char *)"key8";
ARC_CHECK(2 == *(int32_t *)ARC_Hashtable_Get(hashtable, (char *)"tests")); int32_t val0 = 2;
int32_t val1 = 7;
int32_t val2 = 4;
int32_t val3 = 9;
int32_t val4 = 0;
int32_t val5 = 1;
int32_t val6 = 3;
int32_t val7 = 5;
int32_t val8 = 6;
ARC_Hashtable_Add(hashtable, key0, &val0);
ARC_Hashtable_Add(hashtable, key1, &val1);
ARC_Hashtable_Add(hashtable, key2, &val2);
ARC_Hashtable_Add(hashtable, key3, &val3);
ARC_Hashtable_Add(hashtable, key4, &val4);
ARC_Hashtable_Add(hashtable, key5, &val5);
ARC_Hashtable_Add(hashtable, key6, &val6);
ARC_Hashtable_Add(hashtable, key7, &val7);
ARC_Hashtable_Add(hashtable, key8, &val8);
ARC_CHECK(2 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key0"));
ARC_CHECK(7 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key1"));
ARC_CHECK(4 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key2"));
ARC_CHECK(9 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key3"));
ARC_CHECK(0 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key4"));
ARC_CHECK(1 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key5"));
ARC_CHECK(3 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key6"));
ARC_CHECK(5 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key7"));
ARC_CHECK(6 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key8"));
ARC_Hashtable_Remove(hashtable, (void *)"key2");
ARC_CHECK(2 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key0"));
ARC_CHECK(7 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key1"));
ARC_CHECK(9 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key3"));
ARC_CHECK(0 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key4"));
ARC_CHECK(1 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key5"));
ARC_CHECK(3 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key6"));
ARC_CHECK(5 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key7"));
ARC_CHECK(6 == *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key8"));
TEST_Hashtable_Print(hashtable);
ARC_Hashtable_Remove(hashtable, (void *)"key0");
TEST_Hashtable_Print(hashtable);
ARC_Hashtable_Remove(hashtable, (void *)"key4");
TEST_Hashtable_Print(hashtable);
ARC_Hashtable_Remove(hashtable, (void *)"key3");
TEST_Hashtable_Print(hashtable);
ARC_Hashtable_Remove(hashtable, (void *)"key8");
TEST_Hashtable_Print(hashtable);
ARC_Hashtable_Remove(hashtable, (void *)"key6");
TEST_Hashtable_Print(hashtable);
ARC_Hashtable_Remove(hashtable, (void *)"key7");
TEST_Hashtable_Print(hashtable);
ARC_CHECK(7 != *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key1"));
ARC_CHECK(1 != *(int32_t *)ARC_Hashtable_Get(hashtable, (void *)"key5"));
ARC_Hashtable_Destroy(hashtable); ARC_Hashtable_Destroy(hashtable);
} }